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Abstract. Classical solntions for a relativistic electron-dyon system are found in terms of 
the action variables. A formula for the energy of the system is obtained and comparison 
with the corresponding quantum mechanical formula is made, with results showing that 
classical physics gives the correct single-particle energy formula not including quantum 
corrections, which in turn are essential to the issue of breakdown. 

1. Introduction 

Recent work on superconducting cosmic strings has renewed the interest in the problem 
of the stability of the QED vacuum in a strong inhomogeneous magnetic field [I]. 
Amsterdamski [2] supposed that pairs are produced even by a DC current in a straight 
string, while Gornicki et a1 [3] indicated that there is no pair creation in an arbitrary 
static magnetic field. So the issue remains to be investigated. In the case of a strong 
inhomogeneous electric field, the situation is simple. By studying energy levels of the 
electron-nucleus system, the conclusion is drawn for an extended nucleus that with the 
increase of the nucleus charge Z the bound state energy level lowers, and eventually at 
the critical value Z,, it begins to ‘dive’ into the negative energy continuum, and e”e- 
pairs are created [4]. A similar reasoning seems to be applicable to the case of a magnetic 
field. One may consider the bound state of an electron-monopole system and find the 
critical monopole charge, if it exists. But, as is well known. there are some mathematical 
difficulties which handicap such an approach [SI. Instead we consider an electron-dyon 
system. A dyon is a Dirac monopole carrying an electric charge which makes a bound 
state possible. With this model and using a technique very similar to that used formerly 
for an electron-monopole system, S K Bose [6] solved the corresponding Dirac equation 
and found a formula for its energy spectrum, which indicates that any non-zero magnetic 
charge may induce a breakdown only in the presence of a non-zero electric charge, 
however small it is. Obviously, from Bose’s solution we can draw the conclusion that 
a static inhomogeneous magnetic field in general (considered as the superposition of 
fields of magnetic charges) may induce pair creation only in the presence of an electric 
charge. 

In view of the fact that Bose’s derivation is somewhat difficult to follow and its 
physical implication is not always clear, it seems profitable to investigate its classical 
counterpart. In this article we find the classical solution of a relativistic electron-dyon 
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system and obtain a formula for its energy in terms of the action variables, which has 
a form very similar to that of Bose’s, and hence we are able to give a classical explanation 
for some of Bose’s results 171. This leads to the conclusion that the ‘breakdown’ for an 
electron-dyon system is essentially a relativistic effect, and similar situations occur 
whether classical or quantum theory is invoked. 

Throughout this paper, only point-like dyons are considered, generalization to 
extended dyons is not difficult. In section 2, the classical formula for the energy of an 
electron-dyon system is obtained; In section 3, a comparison with the corresponding 
quantum mechanical formula found by Bose is made; the conclusion is drawn that, in 
both cases, with any non-zero magnetic charge and simultaneously any non-zero electric 
charge, breakdown occurs. Lastly, in section 4, some general remarks are made. 
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2. Classical solution for a relativistic electron4yon system 

We treat the relativistic electron-dyon system in action-angle variables, using the stan- 
dard Hamiltonian formulation [SI. The Hamilton-Jacobi equation for this system may 
be readily written as 

where S(q, a, 1 )  is Hamilton’s principal function and A is the vector potential due to 
the magnetic charge of the dyon; two choices for A are necessary to avoid the so-called 
strings of singularities 191. In polar coordinates one possible choice for A is 

AI e-A,=O - I Ai--  + -  g (1-cos0) 
r sin 0 

which is singular only at 0=n, and another one is 

o - A , = O  It A”-  + - -  - g (I+cos9) 
r sin 0 (3)  

which is singular only at 0=0. In these formulas g is the magnetic charge. 
Hence, in polar coordinates, the Hamilton-Jacobi equation has the form 

Making the transformation from S(q, a ,  t) to Hamilton’s characteristic function 
W(q, a )  and separating the variables, we obtain 

where W,, We and H’Q are functions of r ,  0 and 4, respectively, W =  
Wr(r) t Wo(0)  t I+’+(# ). Equation ( 5 )  can be solved in a routine way, but we are 
primarily interested in obtaining the action variables. 
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Setting 

the Hamilton-Jacobi equation reduces to 

The action variables .I4, Je and J ,  are determined by the following definition. 

x i = r ,  B,b. aw 
ax, 

.Ij= f -dxj 

Their explicit expressions may be obtained by using equations (6)-(8): 
” 

The first integral immedjately yields the result J+= 2ra4. The second integral is a little 
tedious; to evaluate it we first change the variable 0 to z 

(13) 
1 
2i 

= z cos 0=t(z+z-’) sin e=-(z-Z-l) 

and the integration contour is a unit circle whose centre is the origin. The resultant 
integration may be performed by using the method of residues [IO]. Care should be 
taken that the integrand has three poles: a pole at z=O inside the contour and two 
poles z = & l  on the contour. To find the residue of the integrand relative lo the pole 
z=O, we expand the integrand in a Taylor series about z=O and evaluate the residue 
easily 

whether A: or AY is used. As to the residues relative to z= *I, the calculation is a little 
involved. For z=+I ,  A $  should be used and expansion about z=+1 furnishes the 
residue 

R,, =ia+ (15) 

while for z = - 1, A$ should be used and the residue is also 

R-,  =ia+ (16) 
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Taking all these into account and using the residue theorem, we obtain 

Pan Hui-yun and Zhao Zu Sen 

Solving for a: and substituting the result into (12), we obtain 

This contour integral can also be evaluated by using the method of residues [8] with 
the result 

Solving for E, we obtain 

(20) 
E 2nZe2 
z={l+ [J,c+ [(Je + J+ )’? - (2nze’)Z- (2neg)2]’/2 

This is our main result. Two special cases are of particular interest. For g= 0, i.e. with 
no magnetic charge, the above equation reduces to the classical expression for the 
energy ofa  relativistic electron-nucleus system. On the other hand, for Z=O, i.e. only 
the monopole is considered, E=inc2, no bound states exist. Note that here and there 
we suppose no magnetic moment adherent to the electron [5]. 

3. Comparison with relativistic quantum theory 

Bose [6]  solved the Dirac equation for an electron-dyon system and found the formula 
for its energy spectrum as follows 

-={I+[ E Z a  
m 2  n, + [ ( J +  i ) 2 - ( Z ~ ) ’ -  ( e g / f i ~ ) ~ ] ” ~  

where (Y =e2/fic is the fine structure constant. Formula (20) is formally very similar to 
formula (21) .  According to Bohr-Sommerfeld quantum conditions, action variables 

Ji= f Pidq, should be integers multiplied by Planck‘s constant; the two formulas are 

nearly identical except for a half integer quantum number which, as is well known, 
distinguishes quantum mechanics from the old quantum theory. 

The implications of these two formulas as to the role of magnetic charge orfand 
electric charge in the occurrence of breakdown are also similar. 

For a simple electric charge, g=O, equations (20) and (21)  reduce to, respectively 
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and 

In the classical formula (D) ,  by making the angular momentum small enough one 
makes negative the argument of the square root in the denominator of the second term 
in parentheses, so the classical formula (22) gives a breakdown for any nuclear charge 
Z. while quantum mechanics puts a lower bound on the angular momentum of the 
electron-nucleus system and hence yields a threshold value 137 for a point electric 
charge Z in (23). On the other hand, for a given angular momentum L,  we can define 
a ‘strong’ Coulomb potential as one for which Ze/Lc> 1, i.e. which causes the radius 
of circular orbits to shrink to zero, with this, Garcia [7] gave a classical analogue of 
the breakdown of the Dirac hydrogenic atom equations. 

If there is a magnetic charge simultaneously, gfO, the classical formula (20) shows 
that for any non-zero electric charge, by making the angular momentum sufficiently 
small, breakdown occurs; while in quantum formula (21), the orbital angular momen- 
tum acquires a minimum value equal to the product of electric and magnetic charges 
in natural units, thus changing the threshold value from Z =  137 to Z=O. So in both 
cases, with any non-zero magnetic charge and simultaneously any non-zero electric 
charge, breakdown, being essentially a relativistic effect, occurs. 

4. Remarks 

In conclusion some general remarks are made: 
(1) For the energy of an electron-dyon system both our classical relativistic formula 

and Bose’s relativistic quantum formula lead to the same conclusion: a magnetic charge 
may induce a breakdown only in the presence of an electric charge, however small it 
is. This conclusion is helpful to settle the issue pointed out in the beginning of this 
article [l l] .  

(2) All our discussions are limited to pointlike dyons, in reality the dyon is extended; 
to generalize our results to an extended dyon is not difficult, and we may proceed in 
perfect analogy to the case of an electron-nucleus system [IZ], as noted earlier. 

(3) If Witten’s effect [I31 is taken into account, a magnetic pole may induce an 
electric charge, then on the basis of the above discussion, an electron-monopole system 
may behave in a similar way to an electron-dyon system. 
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